Сейчас фармотрасль разрабатывает не только препараты от рака в виде микрокапсулы, но и лекарства от нейродегенеративных заболеваний и туберкулеза. Также ученые создают по этому принципу антибиотики и анальгетики, которые будут безопаснее существующих. Научный сотрудник лаборатории роста клеток и тканей Института теоретической и экспериментальной биофизики РАН Антон Попов рассказал, что их коллектив разработал новую систему внутриклеточной доставки биологически активных веществ на основе полиэлектролитных микрокапсул. Они включают наночастицы диоксида церия, которые можно будет применять для создания противовоспалительных препаратов нового поколения.
Данный тип наночастиц обладает уникальными антиоксидантными свойствами, что обеспечивает нейтрализацию губительных для клеток активных форм кислорода. В оболочке разработанной микрокапсулы наночастицы образуют тонкий слой, который обеспечивает сохранность вещества от агрессивных воздействий снаружи — например, пероксида водорода, переводя его в обычную воду.
Сами по себе такие микроконтейнеры (полиэлектролитные микрокапсулы) давно известны и хорошо изучены как система доставки веществ в клетку, в том числе различных лекарственных средств. Их прототипы были созданы российскими учеными давно. Как сообщил «Известиям» профессор кафедры фармакологии Института фармации и трансляционной медицины МГМУ им. И.М. Сеченова Владимир Чубарев первые препараты в виде лекарственной формы-микрокапсул начали разрабатываться в нашей стране почти полвека назад.
В нашем институте под руководством члена-корреспондента РАМН Антонины Тенцовой были разработаны теоретические основы по созданию микрокапсул на основе липосом. В дальнейшем они получили практическое применение в виде липосомальных препаратов, содержащих различные лекарственные субстанции. Изучение фармакологических свойств этих микрокапсул позволило получить очень интересные результаты: биодоступность лекарств значительно повысилась, что позволило применять меньшие дозы и, как следствие, снизить действие побочных эффектов. Тогда никто в нашей стране не оперировал понятием «нанолекарство», но потом микрокапсулы с размером менее 1 микрона стали называться нанокапсулами, — рассказал Владимир Чубарев.
По словам ученого, на рынок новые отечественные медикаменты, действующие на основе микрокапсул, должны выйти в течение пяти лет.
Однако сегодня в мире уже существует свыше 30 препаратов на основе нанокапсул, которые используются в клинической практике или находятся в стадии испытаний. Как пояснил «Известиям» руководитель мегагранта и лаборатории «Химический дизайн бионаноматериалов» МГУ им. М.В. Ломоносова Александр Кабанов, в это число входят различные препараты на основе липосом, белковых наночастиц и полимерных мицелл для противоопухолевой терапии, а также наночастицы оксида железа. К наиболее известным нанопрепаратам относится «Пегилированный липосомальный доксорубицин» (в России его знают как «Келикс») для лечения рака яичника и молочной железы.
Он обладает меньшим побочным действием, то есть он более безопасный по сравнению с обычным лекарством, и применяется у больных с разными осложнениями, — отметил Александр Кабанов.
По словам ученого, самый большой на сегодня рынок продаж — около миллиарда долларов в год — у противоракового препарата Абраксан, представляющего собой нанокапсулы на основе природного противоопухолевого препарата паклитакселя и сывороточного белка человека. Он применяется для лечения разных видов рака.
Преимуществ у таких лекарств несколько. В некоторых случаях это снижение побочных эффектов. В других — возможность безопасного введения в организм и доставка в опухоль плохо растворимых в воде лекарств.
Еще одно перспективное направление в создании препаратов на основе наночастиц — капсулы, управляемые ультразвуком. По словам профессора Сеченовского университета Владимира Чубарева, преимущество таких препаратов в том, что в силу своих микроскопических размеров они проходят туда, куда обычное лекарство плохо проникает или не попадает совсем.
В ряде случаев в дополнение к таргетной доставке лекарств создают микрокапсулы, которые в очаге поражения могут разлагаться при ультразвуковом облучении или повышении температуры опухоли. Для этого, например, создается направленный пучок безопасного для человека ультразвукового облучения. Липосома в результате распадается и высвобождает в опухоли действующее вещество, — сообщил ученый.