Драг-дизайн. Современный подход к созданию лекарств

0
10003

Какую мишень нужно поразить, чтобы создать новое лекарство, кто такие драг-хантеры и зачем героин применяли для лечения от кашля, в рамках «Дня биологии» Института биоорганической химии (ИБХ) РАН рассказал кандидат химических наук, инженер лаборатории моделирования биомолекулярных систем ИБХ РАН Валентин Табакмахер. 

Драг-дизайн — это направленная разработка новых лекарственных препаратов с заранее заданными свойствами. В такой формулировке привлекает внимание слово «направленная», не так ли? Тут же возникает вопрос: а что, бывает «ненаправленная» разработка лекарственных препаратов? И как задают эти самые свойства? Чтобы ответить на эти вопросы, имеет смысл разобраться в общей концепции создания лекарств, какой она представляется в настоящее время. Но сначала немного истории.

В 70-х годах XIX века Пауль Эрлих, будучи еще студентом-медиком, выдвинул идею о существовании тканевых образований в организме, которые он назвал «хеморецепторами». Он предположил, что они могут специфически взаимодействовать c химическими соединениями (такие специально созданные лекарства Эрлих называл «magische Kugel» — «волшебная пуля» — прим. Indicator.Ru). Эту идею позже развил Джон Ленгли. Он постулировал, что в каждой клетке организма есть белки, которые могут связываться с химическими соединениями, менять свое состояние и таким образом управлять работой клетки и организма в целом. Что это означало для создания лекарств? С точки зрения лекарственной терапии (фармакотерапии), это означало, что в организме лекарства взаимодействуют ни с чем попало, а с конкретными молекулами.

Отсюда и специфическая терминология: эти «конкретные молекулы» организма принято называть «мишенями». Мишень — это макромолекула, связанная с определенной функцией, нарушение которой вызывает патологию. Обычно мишенями являются ферменты или клеточные рецепторы.

С другой стороны у нас лекарство — химическое соединение, специфически взаимодействующее с мишенью, таким образом влияющее на мишень и опосредованно на процессы внутри клетки. Обычно лекарствами являются низкомолекулярные соединения. Всем известна ацетилсалициловая кислота (аспирин), применяемая как жаропонижающее и противовоспалительное средство. Ее мишенью является циклооксигеназа (макромолекула) — фермент, участвующий в воспалительном процессе. Аспирин необратимо связывается с циклооксигеназой и таким образом препятствует развитию воспалительного процесса.

Как же создают лекарство? Прежде всего, нужно определиться с мишенью. Это очень сложно сделать, поскольку в развитии патологического процесса обычно участвует не один белок, а несколько. Сегодня с этой задачей успешно справляются методы сравнительной и функциональной геномики.

Если мы уже определились с тем, что является мишенью, нам нужно решить, что мы будем тестировать в отношении этой мишени, что мы будем рассматривать как потенциальное лекарство. Мы не можем протестировать все химические соединения, которые известны человечеству, их десятки миллионов. Поэтому нужно наложить какие-нибудь ограничения (обычно они называются drug-likeness, то есть «подобие лекарствам»). Во-первых, растворимость. Во-вторых, небольшой молекулярный вес. В-третьих, наличие или отсутствие определенных заряженных групп и так далее. Таким образом мы сужаем «химическое пространство» с десятков миллионов до миллиона молекул, которые будем тестировать в отношении мишени. Обычно фармкомпании используют библиотеки соединений, созданные специально для этих целей.

Следующий этап называется «скрининг» или поиск лигандов. Лиганды — это молекулы, которые стопроцентно взаимодействуют с нашей мишенью. Как проводится скрининг. Представьте себе прямоугольный кусок стекла, в котором тысяча микролитровых углублений-луночек, а в каждой из них находится наш белок-мишень. В луночку добавляется соединение, которое нужно протестировать, а потом регистрируется, есть взаимодействие или нет. Естественно это делается не людьми, а автоматически, на приборах, которые могут работать круглосуточно и даже круглогодично. Таким образом, в результате скрининга вместо миллиона потенциальных соединений мы получаем всего несколько тысяч.

На следующем этапе отобранные соединения проходят процедуру оптимизации, то есть химической модификации. От молекул «отрезают» химические группы или, наоборот, пришивают другие группы, и эти молекулы снова проходят процедуру скрининга, чтобы проверить, как изменилась активность, до сих пор ли соединение связывается с мишенью, стало оно связываться лучше или хуже. Пример распространенной модификации — ацетилирование, присоединение остатка уксусной кислоты. Аминокислота цистеин используется в терапии, например, для лечения катаракты. Ацетил-производное цистеина — ацетилцистеин (более известный как АЦЦ) — используется, например, при бронхите для разжижения мокроты. Интересно, что такая модификация очень часто используется в сфере разработки лекарств. Например, ацетилсалициловая кислота — это ацетил-производное салициловой кислоты, а парацетамол — это ацетил-производное анилина, тоже полученное ацетилированием.

В результате оптимизации отбирается несколько десятков лигандов, которые можно тестировать дальше. Следующий этап называется «тестирование». На этом этапе проверяется безопасность и эффективность исследуемого вещества. Это самый дорогой, самый трудный, самый долгий этап. Он состоит из многих шагов. Сначала вещество тестируют в лабораториях, потом на лабораторных животных, далее идут клинические исследования на людях, состоящие из множества фаз.

После истории с печально известным препаратом талидомид клиническое тестирование приобрело именно такой вид, какой оно имеет сейчас. В конце 1950-х годов в Германии этот препарат впервые был выпущен на рынок, а уже в начале 1960-х он был запрещен. Препарат был разработан для беременных женщин для снятия стресса и улучшения сна. Выяснилось, что талидомид обладает тератогенным эффектом, то есть влияет на развитие плода. В результате употребления этого препарата рождались дети с дефектами конечностей или вообще без них. Позднее, в 1980-х годах он был разрешен в США для лечения лепры (проказы). В химиотерапии при лечении рака та же самая ситуация: химиотерапия негативно влияет на все в организме, но в первую очередь она убивает рак. Талидомид, видимо, показал эффективность в отношении лепры, и еще, насколько известно, в 2006 году его использовали в США для лечения рака кожи.

Или, например, другое соединение, которое компания Bayer выпустила без должных клинических исследований в конце XIX века как лекарство от кашля на замену морфину. Сначала это вещество даже добавляли в препараты для детей, но потом выяснилось, что оно вызывает зависимость и в печени распадается на морфин. Называлось соединение героин.

Еще один пример, связанный с паллиативным влиянием правильных клинических исследований вещества. Силденафил был синтезирован для увеличения коронарного (сердечного) кровотока и лечения ишемической болезни сердца. На стадии клинического тестирования выяснилось, что оно практически не влияет на коронарный кровоток, зато улучшает кровообращение в области органов малого таза и повышает потенцию. Теперь это вещество известно как виагра.

Иногда идеи отдельных людей вносят в развитии драг-дизайна гораздо больше, чем все проверенные методы. Таких людей принято называть драг-хантерами, то есть «охотниками на лекарства». Один из них, Джеймс Блейк, исследовал способ понижения артериального давления. Известно, что адреналин регулирует артериальное давление. Блейк высказал идею, что можно создать молекулу, похожую на адреналин, связывающуюся с адреналиновым рецептором, но не обладающую активностью адреналина. В результате был получен пропранолол, более известный как анаприлин. Это вещество помогает миллионам людей каждый день.

Подобная ситуация с этим же человеком произошла, когда он исследовал гистаминовые рецепторы. В итоге был синтезирован циметидин (более известный как тагамет) — лекарство от язвенной болезни желудка и язвы двенадцатиперстной кишки. Исследования таких ученых показали, насколько важно уделять внимание структуре потенциальных соединений, а также структуре мишеней на этом фоне. Огромное развитие получили методы компьютерного моделирования молекул. Конечно, можно сократить и стоимость разработки лекарства, и уменьшить время разработки, но на сегодня невозможно создать препарат, чтобы вообще не замарать руки мокрым экспериментом в лаборатории.

Наиболее используемые методы молекулярного моделирования в драг-дизайне — это непосредственно моделирование 3D-структуры молекул, дизайн лекарств de nova (то есть «с нуля»), моделирование связывания лиганд с мишенью, а также виртуальный скрининг.

Допустим, мы знаем мишень и хорошо знакомы со структурами лигандов, например структурами адреналина, и можем синтезировать молекулу, похожую на известный лиганд, но не обладающую ненужными нам свойствами. Адреналин, связываясь с адреналиновыми рецепторами, активируется. Нужно создать пропранолол, который не будет активировать их. Почему? Потому что мы знаем секрет: структура химического соединения определяет его свойства. Существует несколько групп методов, которые направлены на моделирование лигандов, основываясь на структуре известных лигандов: например, методы определения похожести молекулы и методы количественной связи между структурой и активностью.

Если мы знаем структуру какой-то мишени, то есть взаимное расположение атомов в молекуле, мы можем смоделировать связывания какого-нибудь потенциального лиганда с этой мишенью. Такой эксперимент называется «молекулярный докинг», то есть «молекулярная стыковка». Если мы смоделируем много вариантов взаимодействия одной и той же мишени со многим лигандами, так мы проведем виртуальный скрининг. Даже если структура мишени неизвестна, можно ее смоделировать при условии, что есть структура белка, который похож на мишень.

Драг-дизайн не единственный подход к разработке лекарств или, если быть точнее, не единственный успешный подход. Иногда лекарство открывают как звезды, планеты или острова. Такой подход называется «драг-дискавери» («открытие лекарства»). В рамках этого подхода тоже тестируют соединение на определенную активность в отношении определенных мишеней. Обычно речь идет о тестировании соединений из биологических объектов. Пример взаимодействия драг-дизайна и драг-дискавери — соединение мидостаурин. Изначально оно было выделено из бактерий, а потом химически модифицировано. Сегодня оно проходит клинические испытания, предполагается, что мидостаурин поможет в лечении лейкоза и мастоцитоза.

Еще 50 лет назад многие болезни казались неизлечимыми. Но именно с использованием драг-дизайна были разработаны лекарства, которые сегодня помогают бороться с этими заболеваниями. Вероятно, развитие драг-дизайна поможет впоследствии победить такие болезни, как рак, СПИД или болезнь Альцгеймера.

Расшифровку подготовила Дарья Сапрыкина